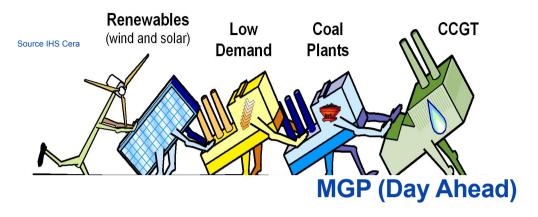


La risposta di GE alle attuali esigenze del mercato elettrico

Tecnologie per aumentare rendimento e flessibilita' di impianti esistenti


Antonio Testoni 08 Aprile 2014

Copyright 2014 General Electric Company Proprietary

All Rights Reserved. No part of this document may be reproduced, transmitted, stored in a retrieval system nor translated into any human or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission of the General Electric Company

Mercato Elettrico

Principali Richieste

- Efficienza
- Specialmente a carichi parziali
- Ottimizzazione dei costi variabili
- Riduzione del minimo tecnico

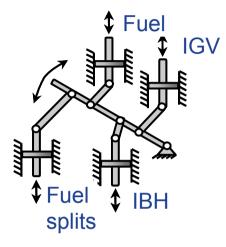
MSD Regolazione di Frequenza secondaria ...

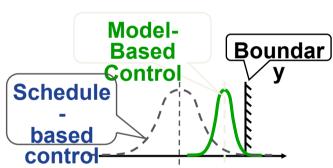
- Riduzione tempi di avviamento "Fast Start "
- Aumento delle rampe di carico "Fast Ramp"
- Flessibilita' operativa FFH / FS
- Aumentare Delta Pmax- Pmin

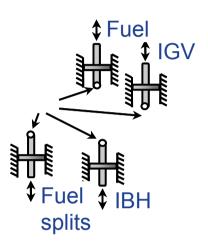
Nel rispetto delle emissioni 30 mg NOx, 30 mg CO, 0 mg SOx

FlexEfficiency Solutions for 9F and 9E units

Tech	Size	Installed in Italy	FlexEfficiency Solutions	
9 F	400 MW (109) 800 MW (209)	28 units ~ 15% Programmable Capacity	OpFlex Platform 9F Advance Gas Path Partial Load Efficiency Fast Start	
9 E	127 MW SC	24 units ~ 5% Programmable Capacity	DLN1 Extend 9E Advance Gas Path	




OpFlex Platform MBC - New control methodology



Schedule Based Control

Model Based Control

Off-line, static model

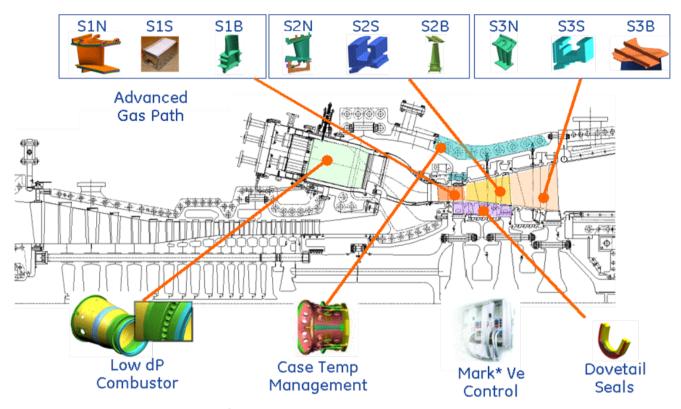
- Traditional gas turbine control approach
 Indirect boundary protection
- Dependent actions ... effectors tied together Inflexibility
 - Margins applied for worst-case conditions

On-line, real-time model

GE aircraft engines control approach

Direct boundary protection

- Independent actions ... individual boundariesFlexibility
 - Unit-specific performance / operability entitlement


OpFlex Platform

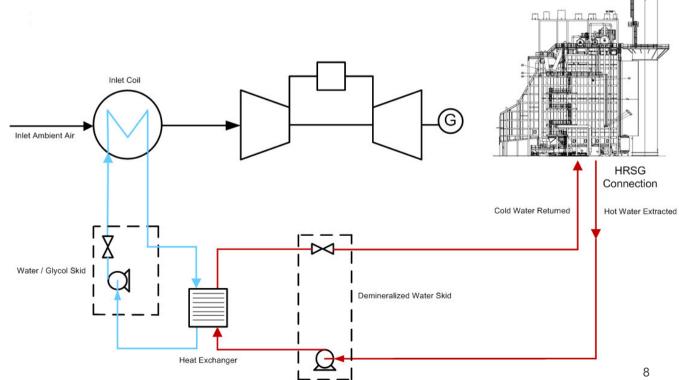
OE	
91	
	_

	Description and Benefits
ETS (Basis)	 During grid stability event rapid load change Fuel to air ratio must remain within the operability limits of the combustor Control detection and response have different delays fuel, air, exhaust Solution: Coordinated Air to Fuel (CAF) with feed forward control for IGV angle
Autotune (Basis)	 No need for combustion re-tuning Reliable operation up to +/- 10% variation in MWI Automated firing temperature correction
Cold Day Performance	 Dynamics control enables removal of firing temperature suppression below 15°C ~ + 3% GT output @ Tamb <15C
Variable IBH	Heat Rate improvements all loads (up to -1.2% @ part load in CC 109)
Extend Turndown	Up to 35% GT Load
Fast Ramp	From 21 MW/min to 50MW/min including advanced control on the Attemperation. Maintenance Factor to apply under development.
Peak Load	 Peak Firing +30F above the base-load value (30 mg/Nm³ NOx and 20 mg/Nm³ CO) Up to 2.2% increase in GT output Up to 1.5% increase in CC output Maintenance Factor to apply

9F Advance Gas Path

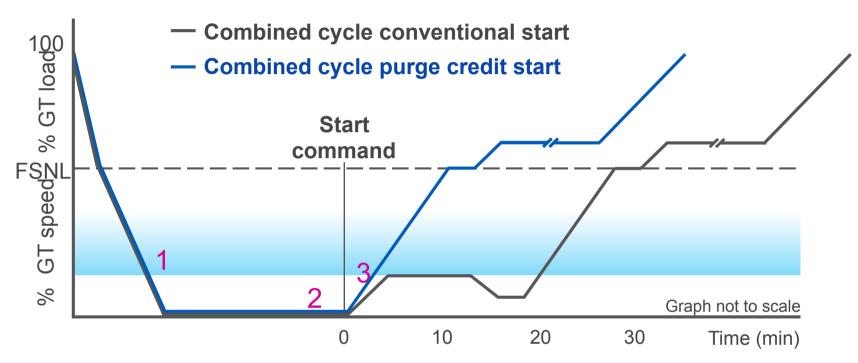
- Aerodynamic scale of the 7FA.04 advanced gas path which uses FB technology
- Reduced cooling and sealing flows and tighter clearances for reduced leakage flows
- Design enhancements to address known 9FA.03 hot gas path distress modes
- Firing temperature increase (+20F)
- Benefits

- 1. Heat Rate (BTU / KWh) at all loads: 1.6% 2.1% in CC (109)
- 2. Power (MW): ~ 5% in CC (109)
- 3. Repair Interval: 32K FFH / 900 (1200) FS


PLE (Partial Load Efficiency)

- Based on DI N2 6+
- Uses low level energy from the bottoming cycle to heat the gas turbine inlet air during part load operations. Operates the compressor at more efficient point

Benefits


- Min turndown up to 30% GT Load
- Heat rate improvement especially at min load Up to -2% Combined Cycle
- Requires feasibility study

Fast Start (Purge Credit)

Features

- 1. Purge credit: GT purge performed during normal shutdown
- 2. Pre-start checks: automated check sequences
- 3. Fire on the fly: ignition during acceleration and warm-up removal

Benefits:

Reduction of Start Up Time = Purge Credit time

9E

9E Advanced Gas Path

Features and benefits

Stage	Part	Improvement	Benefit
1 st	Nozzle	Improved sealing Advanced cooling	Clearances Durability/Perf
	Bucket	Turbulators Dovetail sealing	Durability/Perf Clearances
	Shroud	Abradable shroud	Clearances
2 nd	Nozzle	Advanced cooling GTD*262 Alloy	Durability and performance
	Bucket	Advanced Cooling Dovetail sealing	Durability/Perf Clearances
	Shroud	Abradable honeycomb	Clearances
	Nozzle	3D aero	Performance
3 rd	Bucket	3D aero	Performance
3.4	Shroud	Abradable honeycomb	Clearances

Performances	Output	Heat rate	Exhaust energy
vs 2007 Unit	+4.2%	-2.5%	+0.3%

	Inspection Intervals (FFH)	Replace intervals (FFH)
9E STD HGP	24,000	72,000
9E AGP	32,000	96,000

9E Dry Low NOx Extend

Fuel Delivery Flexhose:

Compliant design for thermal transients

for leak analysis:Existing dynamics probe port

Combustion Dynamics and gas sampling

Integral, dual-function design

Fuel Piping Vessel Penetration:

· Precision on-site machined

Late-Stage Fuel Manifold:Robust thick-wall tubing

Dilution Holes:

- Additional Air-Bypass
- Optimized for turndown

Air-Bypass & Late-Stage Fuel Injector

- Low profile design
- Integral with Transition Piece Body

Benefits

- Extended CO compliant turndown From 60%-35% of peak load (IBH installed)
- Additional Output: up to 100°F Tfre increase with no increase in current NO_x levels
- Part-Load simple cycle efficiency up to 2% fuel burn reduction (higher Air / Pressure ratio
- Repair Interval: 32K FFH/1300 FS
- Faster Normal Start: from 32 min to 10 min

Principali Richieste

9E

9F

- Efficienza
- Specialmente a carichi parziali
- Ottimizzazione dei costi variabili
- Riduzione del minimo tecnico
- Riduzione tempi di avviamento
 "Fast Start "
- Aumento delle rampe di carico "Fast Ramp"
- Flessibilita' operativa FFH / FS
- Aumentare Delta Pmax- Pmin

AGP

AGP

Variable IBH PLE

32K FFH / 1200 FS

32K FFH / 1200 FS

Extended Turndown PLE

DLN1 Extend

Purge Credit

Ramp rate
Advance
Attemperation

AGP

Peak Fire
Cold Day Performance
AGP

Energia Pulita / Miglior Qualita' dell'Aria

- Senza aumentare i costi dell' Energia
- Garantendo la flessibilita' del Sistema Elettrico
- Rispettando i limiti di emissioni piu' stringenti

ESISTE LA TECNOLOGIA PER FLEX-EFFICIENTARE GLI IMPIANTI

ESTENDERE I WHITE PAPER (TEE) AGLI IMPIANTI DI PRODUZIONE ENERGIA

INCENTIVARE I CONSUMI ELETTRICI

Autotrazione

Riscaldamento

RIFORMATTAZIONE DELLA TARIFFA ELETTRICA

GRAZIE !

